Use of Brewer's Spent Grain for Production of High-Value Mushrooms

Lauren Millis¹, Danielle Bellmer², Stephen Marek³ ¹Undergraduate Research Scholar, ²FAPC and Department of Biosystems Engineering, ³Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK.

Background and Introduction

- Brewer's Spent Grain is a solid waste generated in the brewing industry
- > 38 Million Tons BSG is produced worldwide annually
- Typically used as animal feed, composted, or sent to landfills, but contains valuable nutritional components
- Oyster Mushrooms (Pleurotus ostreatus) typically grown on sawdust & wheat bran

Objective

• Determine the efficiency of using BSG as a primary substrate for growing oyster mushrooms

Materials and Methods

Materials and Methods

Experiment Details

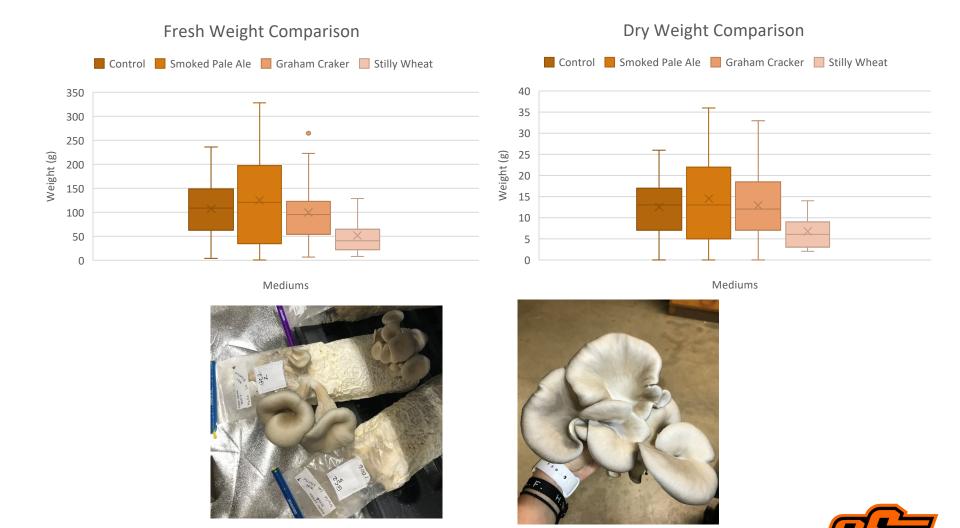
- Each treatment contained 10 substrate bags
- Treatments were staggered 1-2 weeks apart over 4 months
- Cultures were inoculated and transferred to millet jars every 2 weeks
- Inoculated millet jars were mixed into substrate after 2 weeks of growth
- Fresh mushroom samples were weighed and dried for 2 days after harvest then weighed again

Substrates Tested

- Control Sawdust Substrate (3 replications)
- Three BSG Samples:
 - Smoked Pale Ale (2 reps)
 - Graham Cracker (2 reps)
 - Stilly Wheat Ale (2 reps)

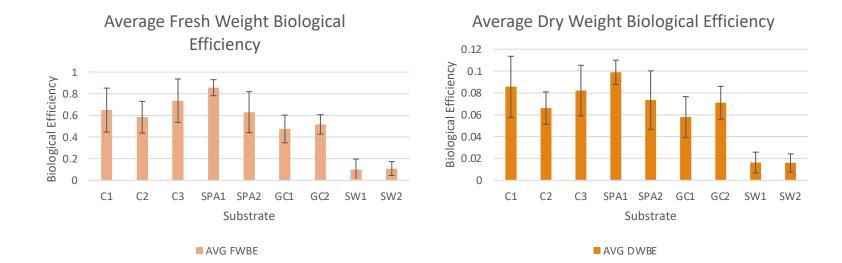
Materials and Methods

Substrate Recipe


Ingredient	Amount
Hardwood Sawdust Pellets (or dry BSG)	204 g (330 mL)
Wheat Bran	63 g (105 mL)
CaSO ₄ (gypsum)	4 g (5 mL)
CaC0 ₃ (lime)	4 g (5 mL)
Millet Bird Seed	12 g (20 mL)
Water	420 mL

Millet Jar Recipe

Ingredient	Amount
Proso millet	½ cup (88 g)
Hardwood sawdust pellets	3-4 pellets
CaSO ₄ (gypsum)	Added in small amounts
CaCO ₃ (lime)	Added in small amounts
CaSiO ₃ (wollastonite)	Added in small amounts
Water	420 mL



Results: Mushroom Growth

Results: Biological Efficiency

Biological Efficiency = mushroom biomass produced / initial substrate mass

Discussion & Conclusions

- All 3 BSG samples fruited and produced mushrooms
- Smoked Pale Ale BSG samples performed slightly better than the Control samples
- Graham Cracker BSG samples performed slightly worse than the Control samples
- Stilly Wheat BSG samples performed much worse than any other samples
- A number of factors could be better controlled during the experiment, including
 - Placement of cut
 - Standardization of harvest time
 - Amount of inoculated millet mixed into the substrate bag

Opportunities for Future Work

- Conduct tests with additional BSG samples
- Evaluate combinations of BSG with wheat bran, sawdust
- Evaluate potential inhibitory compounds in the spent grain
- Conduct research on uses for waste produced after cultivation

Implications

Brewer's spent grain is currently an underutilized resource. Creating value-added opportunities for use of the grain could help turn a waste liability into a future asset.

Acknowledgements

The authors would like to thank Iron Monk Brewery in Stillwater for providing BSG samples. The work was funded by a CASNR Undergraduate Research Award.

