Use of Alternative Salts in Biltong Marinade to Reduce Sodium and Still Achieve USDA-FSIS >5-log Reduction of *Salmonella*

Caitlin Karolenko^{1,2} and Peter Muriana^{1,2}

¹Dept. of Animal and Food Sciences and the ²Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK

What is biltong?

- South African style dried meat product
 - Similar to American style beef jerky

- Uses lean strips of meat that is marinated in traditional spices, vinegar and salt
- Dried at ambient humidity and temperature
- Biltong manufacturing does not meet USDA-FSIS beef jerky compliance guidelines, therefore producers have two options:
 - 1. Process demonstrate a >2-log reduction of *Salmonella* and perform testing of every lot of edible ingredient to ensure no *Salmonella*
 - 2. Process must demonstrate a >5-log reduction of *Salmonella*

Importance of Salt

- Salt (sodium chloride, NaCl) commonly used is large quantities in ready-toeat (RTE) meat products such as biltong
 - Salt contributes to decreased water activity = limits microbial growth
 - Interferes with bacterial cellular mechanisms = limits microbial growth
- Increased consumption of high sodium content foods is associated with:
 - High blood pressure
 - Heart disease
 - Obesity
- Previous work has demonstrated >5-log reduction with NaCl in marinade

Goal: Evaluate the use of alternative salts (potassium chloride and calcium chloride) in the biltong marinade to achieve a 5-log reduction of *Salmonella*

Biltong Manufacturing/Sampling

- Beef pieces were inoculated with five-serovar Salmonella cocktail
- Vacuum-tumbled in a traditional biltong marinade of:
 - Spices (black pepper, coriander)
 - Vinegar (RWV; 100-grain)
 - Salt (either NaCl, KCl, CaCl₂)
- Beef was dried for 8-10 days at 23.9 °C/ 55% RH
 - Microbial enumeration of remaining *Salmonella* was conducted after marination and after 2, 4, 6, 8, and 10 days of drying

Bottom-Round Subprimal Beef

Fabricate/Inoculate beef pieces

Dip in (sterile) Water (30s)

Vacuum Tumble with spice, salt, vinegar (30 min, 15-in Hg)

Hang in drying oven (temp/R/H)

Microbial Enumeration

- 5-log reduction achieved by:
 - CaCl₂ \rightarrow Day 6
 - NaCl \rightarrow Day 7 (via extrapolation)
 - KCI \rightarrow Day 8
- After 10 days of drying, overall reduction:
 - $CaCl_2 \rightarrow 6.37$ -log
 - NaCl \rightarrow 6.22-log
 - KCI → 5.57-log
- NaCl and CaCl₂ not significantly different; both sig. dif. from KCl

Salt Ion Concentration

- Sodium, calcium and potassium ion concentrations were measured using ion-specific electrode meters following processing and drying
 - Following drying, biltong pieces were homogenized using laboratory blender
 - 5g of sample was macerated with distilled water in a paddle mixer
 - Each sample was also testing with remaining ion meters to confirm/detect any additional salt ions

Salt Ion Concentration

Salt Ion Concentrations in Biltong

Ion corresponding to the appropriate salt was most abundant

• K⁺ was elevated in all samples

Source of Elevated K⁺ lons

Source = beef itself was dominate source of K⁺

Commercially Available Biltong Comparison

- Compared ion concentrations of commercially available biltong to in-lab manufactured biltong
- Similar levels of K⁺ were observed
 - 336-591 ppm = commercial
 - 370-456 ppm = in-lab
 - All samples had low levels of Ca²⁺
- Na+:
 - 620 ppm = in-lab
 - 650-674 ppm = Company A
 - 702-775 ppm = Company B

Final Conclusions

- Complete substitution of NaCl with KCl or CaCl₂ in biltong marinade can achieve a 5-log reduction of *Salmonella*
 - Biltong (made with alternative salts) can be marketed as healthier, lowsodium products
 - Still a microbial safe product
- Additional studies needed:
 - Examine sensory characteristics (including taste, texture and tenderness)
 - CaCl₂ and KCl have been associated with off-tastes at high concentrations