

Impact of probiotics on the metabolome of cow and goat milk yogurt

Heena Sharma¹ and Ranjith Ramanathan²

¹National Dairy Research Institute, ²Department of Animal and Food Sciences

Introduction

- Probiotics are micro-organisms that are beneficial for the human gut.
- The addition of probiotics to fermented dairy products such as yogurt produces health potentiating bioactive compounds.
- The role of metabolites in yogurt quality during storage might also reflect starter cultures' metabolic behavior.
- Metabolomics is one of the most promising approaches for investigating metabolite changes in fermented dairy products

Methodology

Fermentation

Yogurt + Probiotic culture (20 DCU/L)

GC-MS

analysis

Incubation (42°C)

Metabolite extraction and derivatization

Principal Component Analysis of cow and goat milk yoghurt

A total of 192 metabolites were detected in probiotic yoghurt

Volcano Plot and Heat Map of Significant Metabolites (Cow and goat probiotic yogurt on day 14)

6

5

3.

2

1

-8

(d) 0 (b)

Significant metabolites on Day 14 (G/C)

Metabolite	P-value	Fold change	Log 2 (FC)
4-Octene, 2,3,6-trimethyl-	<0.01	12.1	3.6
Octanoic acid	< 0.01	35.5	5.2
2-Aminoadipic acid	< 0.01	45	5.5
Glycine	< 0.01	18.3	4.2
d-Prolyl-d-proline	< 0.01	3.5	1.8
L-Kynurenine	< 0.01	21.1	4.4
2,4-Dimethylcinnamic acid	< 0.01	8.1	3
His-Ala	< 0.01	4.4	2.1
Ac-Val-Ala-Asp-CHO	< 0.01	2.9	1.5
Phosphonic acid	< 0.01	2.5	1.3
Met-His	0.01	13	3.7
S-Methyl-L-cysteine	0.01	1.9	0.9
DRaffinose	0.01	3.9	2
lle-Ile-Lys	0.02	1.8	0.9
D-Erythronic acid-gamma-lactone	0.02	1.6	0.6

Impact Pathway Analysis of Significant Metabolites (Cow and goat probiotic yogurt on day 14)

Significance of the results

- Amino acids and peptides predominated the cow milk yoghurt.
- Results revealed more proteolysis in cow milk yoghurt by probiotic culture on day 14.
- Higher pH of cow milk yoghurt than goat milk yoghurt reported in the literature also supported with more amino acids.

Significance of the study

- This study revealed the differences in behavior of probiotic culture in the cow and goat milk
- Association of post-acidification changes with metabolite formation during storage